

Python Basics II: Python Statements

A statement is an instruction that a Python interpreter can execute. A simple statement is
comprised within a single logical line, while a compound statement, containing (groups of)
other statements, generally spans multiple lines. In the following tutorial, you will learn about
several Python compound statements, such as if statements, for statements, and while
statements. You can find a list of more Python statements at
https://docs.python.org/3/reference/index.html.

If statements

The if statement is used for conditional execution. When you want to execute a code only if a
certain condition is satisfied, decision making is required. The if statement is used in Python for
decision making.

The syntax of the if, if…else, and elif statements is as follows:

if expression:

statement (s)

elif:

statement (s)

else:

statement (s)

The if keyword is used to create conditional statements and allows you to execute a block of
code only if a condition is True.

The elif keyword is short for else if. There can be as many elif conditions as necessary between
the if condition and the else conclusion.

The else keyword decides what to do if the condition is False.

Python supports the usual logical conditions from mathematics:

Meaning Math Symbol Python Symbols
Less than < <
Greater than > >
Less than or equal to ≤ <=
Greater than or equal
to ≥ >=

Equals = ==
Not equals ≠ !=

Let’s try the following example:

check if the number is positive or negative or zero

num = int(input("Please enter an integer: "))

Enter an integer when the text is printed.

if num > 0:

print("Positive number")

elif num == 0:

print("Zero")

else:

print("Negative number")

Note: Make sure the print statements are
indented.

Press enter twice to see the output.

For Statements

The for statement is used for iterating over a sequence. Let’s say you are going grocery
shopping and checking the shopping list. Lists can be created using square brackets [].

shopping = [“soda”, “milk”, “bread”]

for x in shopping:

print(x, len(x))

The len() function returns the number of items in an object. When the object is a string, the
len() function returns the number of characters in the string.

len(shopping)

Compare len(x) in shopping and
len(shopping) in the output:

Now you can make a script using both the if and for statements as bellow:

students = {“Amy”: 90, “Paul”: 84, “Sally”: 59, “Dan”: 100}

for student, score in students.items():

if score >= 90:

print(“Student : {}, Score : {}, Pass”.format(student, score))

else:

print(“Student : {}, Score : {}, Fail”.format(student, score))

The curly braces {} are used in
Python to define a dictionary.
Dictionaries are used to store
data values in key:value pairs.
The items() method is used to
return the list with all
dictionary keys with values.

Another useful function is range(). Python range() function returns the sequence of the given
number between the given range. Try the following:

for i in range(10):

print(i)

for i in range(1, 11):

print(i)

Note that the computer counts from 0 unless you
designate the starting number.

While statements

The while statement is used for repeated execution as long as a condition is true. Repeated
execution of a set of statements is called iteration. If the condition is initially false, the loop
body will not be executed.

The following example outputs the value of n until it reaches 5. The code is as follows:

n = 1

while n < 6:

print(n)

n += 1

You can also make a script using both the if and while
statements as bellow:

while True:

num = int(input("Please enter an integer: "))

if num % 2 != 0:

print(“The number is odd.”)

break

print(“The number is even.”)

The break statement is used to terminate the current loop and resume execution at the next
statement.

The while loop starts only if the condition evaluates to True. However, if a break statement is
found, the loop immediately stops. Otherwise, the loop continues its normal execution, and it
stops when the condition evaluates to False.

Written by Ryan Clow, Digital Scholarship Training Specialist, 02/2023

This work is licensed under the Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0

