

Python Game Programming: Rock Paper Scissors

In this tutorial, you are going to make a “Rock Paper Scissors” game. Below are the game rules:

• Rock smashes scissors.
• Paper covers rock.
• Scissors cut paper.

Step 1: Open a text editor

Step 2: Use the import statement

import random

The import statement loads module contents for later access and use. When an import
statement is executed, the standard built-in __import__() function is called. The random
module is a built-in module to generate random variables. We are going to use it to make
computer choose a random value among rock, paper, and scissors each game we play.

Step 3: Print introduction line

print("Welcome to Rock, Paper, Scissors!\n")

Make sure to use double quotes because strings must be enclosed in double quotes for the
data to be recognized as a string, not a number or variable name.

A backslash n (\n) is called a new line and used inside the print statement to create a new line
as its name indicates.

Step 4: Set win counters

player_wins = 0

computer_wins = 0

Assign a value of 0 to win counter variables.

Step 5: Use While statement

while True:

player = input("Enter a choice (rock, paper, scissors): ")

choices = ["rock", "paper", "scissors"]

computer = random.choice(choices)

print(f"\nYou chose {player}, computer chose {computer}.")

While True means loop forever. In other words, the while loop will run as long as the While
condition is True. You can force the loop to end by using the break statement.

Create an input variable where players can enter a value among rock, paper, scissors.

Create a list containing the rock, paper, scissors values with brackets. We will call the list
“choices”.

Then, we are going to use the random module here. Create a random.choice variable. The
choice() function here is used to randomly select an item from a list.

Print the game status information. The f with curly braces is called f-strings, and it lets you
include the value of Python expressions inside a string.

Step 6: Use If statement

if player == computer:

print(f"Both players selected {player}. It is a tie!")

elif player == "rock":

if computer == "scissors":

print("Rock smashes scissors. You win!")

player_wins+=1

else:

print("Paper covers rock. You lose.")

computer_wins+=1

elif player == "paper":

if computer == "rock":

print("Paper covers rock. You win!")

player_wins+=1

else:

print("Scissors cuts paper. You lose.")

computer_wins+=1

elif player == "scissors":

if computer == "paper":

print("Scissors cuts paper. You win!")

player_wins+=1

else:

print("Rock smashes scissors. You lose.")

computer_wins+=1

Note that an if block can go under another if block.

Step 7: Print the win counters

print("You have "+str(player_wins)+" wins")

print("The computer has "+str(computer_wins)+" wins")

The str() function converts the specified value into a string. Instead of the str() function, you can
use f-strings as follows:

print(f"You have {player_wins} wins")

print(f"The computer has {computer_wins} wins")

Note. See the difference between the str() block and the f-string block. Two pairs of double
quotes and two + operators are used only in the str() block. This is called String Concatenation,
which is the process of merging two or more strings. Since the win counters are not originally
strings, we have to separate the strings You have and wins and concatenate them.

Step 8: Ask to quit or play again

repeat = input("\nPlay again? (yes/no): ")

if repeat.lower() != "yes":

print("Thanks for playing!")

break

Create a repeat variable where players can enter a value between yes or no. The lower()
method returns the lowercase string from the given string.

The exclamation mark with an equal sign (!=) is called not equal to operator. If players enter any
value other than yes, the while statement stops operating because of the following break
statement.

The break statement terminates the current loop. It can be used in both while and for loops.

Congratulations! You’ve just built a rock-paper-scissors game in Python.

Below is the entire code:

import random

print("Welcome to Rock, Paper, Scissors!\n")

player_wins = 0

computer_wins = 0

while True:

player = input("Enter a choice (rock, paper, scissors): ")

choices = ["rock", "paper", "scissors"]

computer = random.choice(choices)

print(f"\nYou chose {player}, computer chose {computer}.")

if player == computer:

print(f"Both players selected {player}. It is a tie!")

elif player == "rock":

if computer == "scissors":

print("Rock smashes scissors. You win!")

player_wins+=1

else:

print("Paper covers rock. You lose.")

computer_wins+=1

elif player == "paper":

if computer == "rock":

print("Paper covers rock. You win!")

player_wins+=1

else:

print("Scissors cuts paper. You lose.")

computer_wins+=1

elif player == "scissors":

if computer == "paper":

print("Scissors cuts paper. You win!")

player_wins+=1

else:

print("Rock smashes scissors. You lose.")

computer_wins+=1

print("You have "+str(player_wins)+" wins")

print("The computer has "+str(computer_wins)+" wins")

repeat = input("\nPlay again? (yes/no): ")

if repeat.lower() != "yes":

print("Thanks for playing!")

Break

Written by Ryan Clow, Digital Scholarship Training Specialist, 02/2023

This work is licensed under the Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0

